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The paper reports an analytical solution for the temperature field in a fully developed pipe flow subject to
periodic (of any shape) inlet temperature variation. The solution is given in term of a series of Kummer
functions for the cases of uniform and constant wall temperature and wall heat flux, thus comprising also
the adiabatic wall case. A ‘‘fully developed” region for the fluctuating component of the fluid temperature
is also evidenced and closed-form solutions are given. An interpretation of the temperature field as super-
position of travelling thermal waves is presented and discussed.
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1. Introduction

The need of modelling heat exchangers and regenerators work-
ing under time varying conditions prompted the first analysis of
the unsteady heat transfer in pipe flows. Sparrow and De Farias
[1] were probably the first to study the effect of time varying inlet
temperature conditions in a flat plate channel also for a turbulent
slug flow, and pointed out the difficulties in numerically estimat-
ing the complex eigenvalues of the related Sturm_Liouville prob-
lem. Kakac and Yener [2] and Kakac [3] studied the problem
posed by the analysis of transient temperature variation in parallel
plate channels reporting analytical solutions. Cotta and Ozisik [4]
applied a variation of the generalised integral transform technique
to by-pass the analysis of complex eigenvalue problems and to
solve the transient laminar forced convection problem inside par-
allel plate channels and tubes considering fully developed velocity
distributions and sinusoidal variations of inlet temperature while
Kim et al. [5] extended the solution to the case of arbitrarily shaped
temporal inlet temperature variations. The method required
numerical solutions of systems of algebraic or ordinary differential
equations. Unsal [6,7] fully recognised the importance of solving
the complex eigenvalue problem and gave an approximate analyt-
ical solution for the case of laminar flow between flat plates and in
cylindrical pipes applying the method of matched asymptotic
expansion: two asymptotic expansion of the eigenfunctions, one
valid near the channel centreline and the other valid near the wall,
are combined yielding a single uniformly valid composite asymp-
totic expansion for the complex eigenfunctions. He also presented
ll rights reserved.
another way to solve the complex eigenvalue problem which is
accurate for the smaller eigenvalues.

Following the work of Unsal [7] the present paper reports an
analytical solution of the problem of periodic (arbitrarily shaped)
time varying inlet temperature in fully developed pipe-flow based
on a generalised Fourier expansion in term of Kummer functions,
thus overcoming the approximation inherent to the asymptotic
expansion. The solution is applicable to the cases of uniform and
constant wall temperature and wall heat flux, thus comprising also
the adiabatic wall case.
2. Basic equations

Consider the fully developed Poiseuille flow in a circular pipe,
where the velocity field is given by:

uðrÞ ¼ 2um 1� r2

R2

� �
ð1Þ

and um is the mean velocity on the pipe section. The time dependent
energy equation can then be written:

@T
@t
þ 2um 1� r2

R2

� �
@T
@x
¼ a

1
r
@

@r
r
@T
@r

� �
ð2Þ

with the usual assumption of neglecting the axial conduction in the
fluid, which is justified for Pe ¼ PrRe� 1.

Let split the temperature field into a steady (time averaged) and
a fluctuating part and introduce the Fourier transform of the latter
by: Tðx; r; tÞ ¼ Taðx; rÞ þ

Rþ1
�1 Sðx; r;xÞeixtdx. This also splits the en-

ergy equation into two equations:
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Nomenclature

an complex variable: an ¼ 1
2�

k2
n�bð Þ
4kn

� �
cn non-dimensional phase velocity
c; d real coefficients
D pipe diameter
fn; gn coefficients
Gz Graetz number Gz ¼ x

DRePr
h convective coefficient
k thermal conductivity
Pe Peclet number: Pe ¼ RePr
Pr Prandtl number
pn coefficients
Q heat flux Fourier transform
q heat flux
R pipe radius
r radial coordinate
Re Reynolds number: Re ¼ umD

m
S temperature Fourier transform
T temperature
t time
u axial flow velocity
um bulk velocity
vp phase velocity
W; Z eigenfunctions
x axial coordinate

Greek symbols
a thermal diffusivity
b imaginary non-dimensional frequency: b ¼ ixR2

a
c complex number
d Dirac delta-function
g; f non-dimensional coordinates
H non-dimensional transformed temperature
k square root of eigenvalue
m kinematic viscosity
U Kummer function
u phase delay
x pulsating frequency

Indexes
a time averaged
fd fully developed
i imaginary part of complex number
n order index
r real part of complex number
w wall surface
0 at x ¼ 0
* complex conjugate

Other symbols
h; i scalar product: hf ; gi ¼

R 1
0 f ðgÞgðgÞð1� g2Þgdg

½; � scalar product: ½f ; g� ¼
R 1

0 f ðgÞgðgÞgdg
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the first one for the time averaged temperature field and the second
one for the transformed temperature field. As the present study is
devoted to the analysis of the fluctuating temperature field, only
the second equation will be considered in the rest of the paper,
while solutions of the first one are well known at least for the cases
of imposed uniform wall temperature and imposed uniform wall
heat flux [8]. Introducing the non-dimensional variables: g ¼
r
R ; f ¼ x

RRePr ¼ 2
Gz ; b ¼ ixR2

a ¼ ib0 the transformed equation becomes:

bSþ ð1� g2Þ @S
@f
¼ 1

g
@

@g
g
@S
@g

� �
ð4Þ

The symmetry condition at g ¼ 0 imposes: @S
@g

� �
g¼0
¼ 0, whereas two

kinds of boundary conditions at g ¼ 1 will be considered, namely uni-
form and constant temperature (i.e. nil temperature fluctuation
amplitude at the wall: Sðf;1;xÞ ¼ 0Þ and uniform and constant wall
heat flux (i.e. nil heat flux fluctuation amplitude at the wall:
@S
@g

� �
g¼1
¼ 0). Eq. (4) together with the boundary conditions previ-

ously defined set a Sturm–Liouville problem with complex eigen-
values. It should be pointed out that when the transformed field is
known the temperature fluctuation field can be obtained by the
inversion of the Fourier transform (numerical routines are also read-
ily available), while the particular case of harmonic fluctuations can
be analytically found by setting Sðf;g;xÞ ¼ dðx�x0ÞSðf;gÞ.

3. The eigenvalue problem

Consider Eq. (4), a separation of variable approach allows to
write the solution under the form: S ¼ e�k2fWðk;gÞ, where
Wðk;gÞ satisfies the ODE:
d
dg

g
dW
dg

� �
þ ½k2gð1� g2Þ � bg�W ¼ 0 ð5Þ

Making the following changes of variable: z ¼ cg2 (with c2 ¼ k2), Eq.
(5) transforms to a particular form of the confluent hypergeometric
equation, and the solution (finite at g ¼ 0) is then:

WðgÞ ¼ e�
cg2

2 U
1
2
� ðk

2 � bÞ
4c

( )
;1; cg2

 !
ð6Þ

where Uða; b; zÞ is the Kummer function (see [9]). Setting
k0 ¼

ffiffiffiffiffi
k2

p
; j argðk0Þj < p

2 (i.e. Refk0g > 0) the two solutions of equation
c2 ¼ k2 are: cþ ¼ k0; c� ¼ �k0 yielding two possible solutions of
Eq. (5), precisely:

Wþ ¼ e�
k0g2

2 U
1
2
� ðk

2 � bÞ
4k0

( )
;1; k0g2

 !
;

W� ¼ e
k0g2

2 U
1
2
þ ðk

2 � bÞ
4k0

( )
;1;�k0g2

 !
ð7Þ

The Kummer identity (see [10]):

Uða; b; zÞ ¼ ezUðb� a; b;�zÞ ð8Þ

shows that the two solutions, corresponding to the two possible
choices of c, are actually identical.

The two B.C. on g ¼ 1 now become:

Wðk;1Þ ¼ 0 or
@W
@g

� �
g¼1
¼ 0 ð9Þ

and the eigenvalues k2
n are defined by the solutions of these equa-

tions. In the following it may be convenient to work with the square
roots of the eigenvalues (namely kn) that satisfy two important con-
ditions (see Appendix A):

Refkng2
> Imfkng2; sign½RefkngImfkng� ¼ sign½b0� ð10Þ



Table 1
Real and imaginary parts of the first eigenvalues k2

n for isothermal and isoflux conditions and two values of non-dimensional frequency.

n Isothermal B.C. Isoflux B.C.

b0 ¼ 1 b0 ¼ 10 b0 ¼ 1 b0 ¼ 10

Refk2
ng Imfk2

ng Refk2
ng Imfk2

ng Refk2
ng Imfk2

ng Refk2
ng Imfk2

ng

1 7.315769 1.251203 7.52976 12.48965 0.0416803 1.998956 4.260467 18.70500
2 44.610206 1.456185 44.68587 14.57230 25.66886 2.000838 24.554495 21.08419
3 113.92123 1.537144 113.9404 15.37660 83.85636 2.000128 83.293207 20.13379
4 215.24056 1.584583 215.2424 15.84837 174.1633 2.000038 173.82015 20.03922
5 348.56406 1.617082 348.5596 16.17220 296.5339 2.000016 296.29544 20.01607
6 513.88999 1.641315 513.8832 16.41397 450.9454 2.000007 450.767037 20.00792
7 711.21745 1.660378 711.2098 16.60430 637.3859 2.000004 637.245989 20.00440
8 940.54597 1.675938 940.5382 16.75972 855.8483 2.000002 855.734788 20.00266
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As explained in the Appendix A, we can consider only those values
of kn such that Refkng > 0, which implies that: sign½Imfkng� ¼
sign½b0� and this simplifies the numerical search of the eigenvalues.
To notice that knð�b0Þ ¼ k�nðb0Þ (see again the Appendix A) and this
allows to search the eigenvalues only for b0 > 0. The complex
parameters kn were calculated by means of purposely developed
numerical routines (used to solve numerically Eq. (9) in the plane
kr > 0 \ ki > 0). In the present case this procedure was performed
choosing an accuracy always better than 10�6 and Table 1 reports
the first eight eigenvalues for different values of b0 and for the
two different boundary conditions. The three first eigenvalues can
be compared to those reported by Unsal [7] finding a perfect agree-
ment. It must be noticed that available symbolic computational
tools can also be used to find the eigenvalues with high accuracy.

The most general solution can then be found under the form:

Sðf;g;xÞ ¼
X1
n¼1

SnðxÞe�k2
nfWnðgÞ ð11Þ

where the values of Sn are determined by the B.C. at f ¼ 0
ðSð0;g;xÞ ¼ S0ðg;xÞÞ and due to the orthogonality of the functions
Wn we have:

SnðxÞ ¼
R 1

0 Sð0;g;xÞWnðgÞgð1� g2ÞdgR 1
0 WnðgÞWnðgÞgð1� g2Þdg

¼ hS0;Wni
hWn;Wni

ð12Þ

Let now consider separately the two problems set by the two B.C. at
g ¼ 1.

3.1. The uniform temperature case

In this case the first of (9) holds. As an example consider the
special case of a uniformly distributed fluctuation of the tempera-
ture at f ¼ 0 (i.e. Sð0;g;xÞ ¼ S0ðxÞ). The coefficients Sn are now
SnðxÞ ¼ S0ðxÞfn where:

fnðbÞ ¼
h1;Wni
hWn;Wni

ð13Þ
Table 2
Real and imaginary parts of the coefficients fn (for isothermal wall conditions) and gn (for

n Isothermal B.C.

b0 ¼ 1 b0 ¼ 10

Reffng Imffng Reffng Imffng

1 1.47658 0.00940 1.490744 0.092624
2 �0.8063 �0.01418 �0.82217 �0.14056
3 0.588775 0.007575 0.590636 0.075951
4 �0.47588 �0.00461 0.47596 �0.04623
5 0.405005 0.003096 0.404827 0.030996
6 �0.3558 �0.00222 �0.35561 �0.02222
7 0.319143 0.001671 0.318989 0.016712
8 �0.29079 �0.00130 �0.29067 �0.01303
and Table 2 shows that jfnj are all decreasing with n. The solution is
then:

Sðf;g;xÞ ¼ S0ðxÞ
X1
n¼1

fnðbÞe�k2
nfWnðgÞ ð14Þ

Defining the average of S over the section as:

Smðf;xÞ ¼
R 1

0 Sðf;g;xÞurðgÞgdgR 1
0 urðgÞgdg

¼ 4hS;1i ð15Þ

we get

Smðf;xÞ ¼ 4S0ðxÞ
X1
n¼1

e�k2
nff 2

n hWnWni ð16Þ

To notice that the obvious condition: Smð0;g;xÞ ¼ S0ðxÞ imposes
4
P1

n¼1f 2
n hWnWni ¼ 1 which is a useful check of accuracy for the ser-

ies truncation (for b0 < 50 the partial sum of the first 8 terms gave
an error lower than 10�5 for f > 0:02). The ratio:

Gðf;xÞ ¼ Smðf;xÞ
Smð0;xÞ

¼ Smðf;xÞ
S0ðxÞ

¼ 4
X1
n¼1

e�k2
nff 2

n hWnWni ð17Þ

gives the response of the average fluid temperature at location f, it
is then a transfer function for the mean section temperature fluctu-
ation. In Fig. 1 the absolute value of G is plotted versus the non-
dimensional frequency b0 for different downstream locations f.

In analogy with the steady state solution [8], let define the non-
dimensional temperature profile transform as:

H ¼ Sðf;g;xÞ � Sðf;1;xÞ
Smðf;xÞ � Sðf;1;xÞ ¼

Sðf;g;xÞ
Smðf;xÞ

ð18Þ

and substituting Eqs. (14) and (16) yields:

H ¼
P1

n¼1fnðbÞe�k2
nfWnðgÞ

4
P1

n¼1e�k2
nff 2

n hWnWni
ð19Þ
isoflux conditions) and two values of non-dimensional frequency.

Isoflux B.C.

b0 ¼ 1 b0 ¼ 10

Refgng Imfgng Refgng Imfgng

1.0016 0.062609 1.2956 0.72366
�0.00149 �0.08008 �0.28772 �0.9095
�0.00016 0.025417 �0.01385 0.26699

8.33E�05 �0.01245 0.009094 �0.12656
�8.65E�05 0.00739 �0.00499 0.074399

1.66E�05 �0.00489 0.002858 �0.0491
�7.02E�05 0.00348 �0.00183 0.034859
�7.17E�06 �0.002609 0.001153 �0.02604



Fig. 2. Centreline value of the non-dimensional temperature transform (H(f,0,x))
for different values of the non-dimensional frequency b0.

Fig. 1. Absolute value of the transfer function G normalised by the limiting value at
b0 = 0.
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and Fig. 2 reports the centreline values ðHðf;0;xÞÞ of this function
for different values of the parameter b0, calculated using the first 8
terms of the series. Due to the presence of the exponential terms
e�k2

nf and the fact that Refk2
ng > 0 both Sðf;g;xÞ and Smðf;g;xÞ tend

to zero when f!1, but observing that (see Table 1)
Re k2

nþ1

	 

> Refk2

ng, for f sufficiently large only the first term sur-
vives in both series and the limiting case is then:

HfdðgÞ ¼
W1ðgÞ

4f 1hW1W1i
ð20Þ
Fig. 3. Fully developed solution of the non-dimensional temperature transform
profile for different values of the non-dimensional frequency b0.
that gives the ‘‘fully developed” solution for the transformed field. Fig. 3
shows that an increase of the fluctuation frequency have the effect of
confining the fluid temperature fluctuation towards the pipe axis.

Another important parameter is the ratio between the trans-
formed wall heat flux Q (defined by: qwðf; tÞ ¼ qwaðfÞþRþ1
�1 Qðf;xÞeixtdx) and the mean section temperature transform:

hðf;xÞ ¼ Qðf;1;xÞ
Smðf;xÞ � Sðf;1;xÞ ¼

Qðf;1;xÞ
Smðf;xÞ

ð21Þ

From the general solution and Fourier law:

Qðf;1;xÞ ¼ � k
R

S0ðxÞ
X1
n¼1

fnðbÞe�k2
nf dWnðgÞ

dg

� �
g¼1

ð22Þ

where [9]

dWnðgÞ
dg

� �
g¼1
¼ �kne�

kng2

2 ½Uðan;1; knÞ � 2anUðan þ 1;2; knÞ� ð23Þ

with an ¼ 1
2�

ðk2
n�bÞ
4kn

n o
. The non-dimensional form of this parameter

brings an interesting relation with the Nusselt number as it will
be seen below. Define:

Nuðf;xÞ ¼ hðf;xÞD
k

¼ �1
2

P1
n¼1fnðbÞe�k2

nfW 0
nð1ÞP1

n¼1e�k2
nff 2

n hWnWni
ð24Þ

to obtain a meaningful result, let integrate Eq. (5) between g ¼ 0
and g ¼ 1, then:

W 0
nð1Þ ¼

dWnðgÞ
dg

� �
g¼1
¼ ðbpn � k2

nfnÞhWn;Wni ð25Þ

with:

pn ¼
R 1

0 WnðgÞgdg
hWn;Wni

¼ ½Wn;1�
hWn;Wni

ð26Þ

and substituting into Eq. (24) one obtains:

Nuðf;xÞ ¼ �1
2

P1
n¼1fnðbÞe�k2

nfðbpn � k2
nfnÞhWn;WniP1

n¼1e�k2
nff 2

n hWnWni
ð27Þ

and Fig. 4 reports the numerical evaluation using the first 8 terms of
the series. Again for sufficiently large values of f only the first term
of the series survives and the ‘‘fully developed” value of NuðxÞ is
then:

Nufd ¼
ðk1;rÞ2 � ðk1;iÞ2

2
þ b0

ðp1;if1;r � p1;rf1;iÞ
2jf1j2

" #

þ i k1;rk1;i � b0
ðp1;rf1;r þ p1;if1;iÞ

2jf1j2

" #
ð28Þ
Fig. 4. Values of Nu(f, x) for different values of the non-dimensional frequency b0.



Fig. 5. Fully developed values of Nu versus non-dimensional frequency b0.
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It is worth to notice that the limiting value b ¼ 0 gives the usual va-
lue of Nusselt number found for the steady problem (with uniform
wall temperature) Nufd ¼ 3:656, while Fig. 5 shows the values of
Nufd for different values of b0. To notice finally that the phase differ-
ence between the harmonic fluctuation of the wall heat flux and the
mean section temperature can be written as:

u ¼ arctan
ImfNug
RefNug

� �
ð29Þ

and the results are also reported in Fig. 5. From its definition,
Nuðf;xÞ gives the response in term of wall heat flux to the fluctua-
tion of the mean temperature at the given location, it is then consis-
Fig. 6. Fully developed radial distribution of the non-dimensional temperature
transform profile for different values of the non-dimensional frequency b0 for the
case of constant and uniform wall heat flux and wall temperature.

Table 3
Values of the coefficients cn for the isothermal and isoflux case and some values of the no

n Isothermal B.C.

b0 ¼ 1 b0 ¼ 10 b0 ¼ 50 b0 ¼ 100

1 1.59846 1.60133 1.66389 1.75192
2 1.37345 1.37247 1.35679 1.39903
3 1.30111 1.30068 1.28947 1.25211
4 1.26216 1.26196 1.25686 1.23780
5 1.23680 1.23669 1.23408 1.22505
6 1.21854 1.21847 1.21698 1.21205
7 1.20455 1.20451 1.20359 1.20061
8 1.19336 1.19334 1.19273 1.19081
tent that the increase of the non-dimensional frequency b0

decreases the response amplitude and increases the phase lag.

3.2. The uniform wall heat flux

Consider now the case of imposed constant and uniform heat
flux on the wall (which for qr ¼ 0 also represents the case of adia-
batic wall). The B.C. for the transformed field is the second of (9)
that can be written explicitly [9]:

�Uðan;1; kÞ þ 2anUðan þ 1;2; kÞ ¼ 0 ð30Þ

The eigenvalues k02n yielded by this equation are reported in Table 1

for two values of b0. The eigenfunctions: ZnðgÞ ¼ e�
k0ng2

2 U½an;1; k0ng2�
are different from the Wn (as the eigenvalues are different) but
the solution of Eq. (4) has still the general form:

Sðf;g;xÞ ¼
X1
n¼1

S0nðxÞe�k2
nfZnðgÞ ð31Þ

where the coefficients S0n are defined by the inlet condition. Consider-
ing again the case of uniform temperature distribution at the inlet
section (i.e. Sð0;g;xÞ ¼ S0ðxÞ) and defining: gn ¼ h1;Zni

hZn ;Zni (Table 2 re-
ports some values) the non-dimensional transformed temperature
profile defined by Eq. (18) and the ‘‘fully developed” solution are now:

H ¼
P1

n¼1gnðbÞe�k02n f½ZnðgÞ � Znð1Þ�P1
n¼1gnðbÞe�k02n f½4gnhZnZni � Znð1Þ�

; Hfd ¼
Z1ðgÞ � Z1ð1Þ

4g1hZ1Z1i � Z1ð1Þ
ð32Þ

and the last one is reported in Fig. 6 together with the uniform wall
temperature case for comparison, showing a variation with b qual-
itatively similar but with consistent quantitative differences.

As a general statement one can say that from the above re-
ported results, the fully developed region for the transformed field
is reached for Gz < 20 (as for the time independent case), at least
for all the values of b0 lower that 500.

4. The harmonic case

It is of a certain interest to analyse the particular case of har-
monic inlet temperature variation. In this case the inlet conditions
become: S0ðx0Þ ¼ S0dðx0 �xÞ and the temperature fluctuation
field is:

T 0ðf;g; tÞ ¼ RefSðf;g;xÞeixtg

¼ Re
X1
n¼1

SnðxÞPnðgÞe�ðk
2
n;r�k2

n;iÞfeiðxt�2kn;rkn;ifÞ

( )
ð33Þ

where PnðgÞ are the eigenfunctions. Eq. (33) shows that the fluctu-
ating temperature field is an overlapping of thermal waves with
amplitude decreasing with f and with phase velocity equal to

vp;n ¼
b0

kn;rkn;i
um ¼ cnum ð34Þ
n-dimensional frequency.

Isoflux B.C.

b0 ¼ 1 b0 ¼ 10 b0 ¼ 50 b0 ¼ 100

1.00052 1.06923 1.68222 1.75451
0.99958 0.94858 1.28018 1.44931
0.99994 0.99336 0.64478 1.28076
0.99998 0.99804 0.97160 1.13522
0.99999 0.99920 0.98184 1.02083
1.00000 0.99960 0.99083 0.992590
1.00000 0.99978 0.99484 0.991832
1.00000 0.99987 0.99684 0.993735
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the evaluation of cn shown in Table 3, shows that its value is always
lower than 2 (as expected since the maximum fluid velocity is 2um)
and the dependence of cn on the frequency shows the dispersive
character of such waves.

5. Conclusions

An analytical solution of the periodic temperature field in a fully
developed pipe flow induced by periodic (of any shape and not
necessarily harmonic) fluctuation of the inlet temperature was
given in closed form in terms of a series of mutually orthogonal
Kummer functions. The complex eigenvalue problems set by the
two kind of B.C. (namely, constant and uniform wall temperature
and wall heat flux) were analysed and the dependence of the
eigenvalues on the non-dimensional frequency b0 ¼ xR2

a was re-
ported. The conditions for a fully developed temperature fluctua-
tion field were found and the transformed temperature field was
given in analytical form. The fluctuating temperature field was also
found to be represented by the overlapping of dispersive ‘‘thermal
waves” travelling downstream with phase velocity depending on
the frequency and on the order.

Appendix A

Consider the eigensolutions PnðgÞ ¼ e�
kng2

2 UðaðknÞ;1; kng2Þ satis-
fying the ODE:

d
dg

g
dPn

dg

� �
þ ½k2

ngð1� g2Þ � bg�Pn ¼ 0 ð35Þ

with B.C. Pnð1Þ ¼ 0 or P0nð1Þ, then multiplying the ODE by P�nðgÞ and
integrating between 0 and 1

k2
n ¼

dPn

dg
;
dP�n
dg

� �
hPnP�ni

þ b
½Pn; P

�
n�

hPnP�ni
�

P�nð1Þ
dPn

dg

� �
g¼1

hPnP�ni
ð36Þ

The last term is always nil when one of the B.C. conditions hold,
thus showing that Refk2

ng > 0 and that sign Im k2
n

	 
 �
¼ sign½b0�, and

incidentally, for b0 ¼ 0 all the eigenvalues are real and positive.
These results imply also the following conditions on the real and
imaginary parts of kn : Refkng2

> Imfkng2; and ½RefkngImfkng� ¼
sign½b0�. Moreover, the eigenvalues k2

n depend on the value of b0

and the following relation holds:

knð�bÞ ¼ k�nðbÞ ð37Þ
In fact, consider again Eq. (35), if P ¼ Pðb0; k;gÞ is a solution, then
taking the complex conjugate of Eq. (35) the following relation
holds:

Pð�b0; k
�;gÞ ¼ P�ðb0; k;gÞ ð38Þ

Consider now the general form of linear B.C.

cPðb0; k;1Þ þ d
@Pðb0; k;1Þ

@g
¼ 0 ð39Þ

with c;d real, (again the B.C. given above are obtained setting alter-
natively d ¼ 0 or c ¼ 0) that yields the parameters kn ¼ knðb0Þ.
Equation:

cPð�b0; k
�;1Þ þ d

@Pð�b0; k
�;1Þ

@g
¼ 0 ð40Þ

yields the parameters: k�n ¼ k�nð�b0Þ, but due to (38), Eq. (40) is iden-
tical to:

cP�ðb0; k;1Þ þ d
@P�ðb0; k;1Þ

@g
¼ 0 ð41Þ

that in turn, due to the fact that c and d are real, has the same solu-
tions of Eq. (39), then: k�ð�b0Þ ¼ kðb0Þ and (37) is proven.
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